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Empirical Article

Suicide attempts are a major public health problem, with 
an estimated 25 million nonfatal suicide attempts occur-
ring each year worldwide (Centers for Disease Control 
and Prevention [CDC], 2016; World Health Organization, 
2016). Beyond considerable economic and societal  
burdens  associated with nonfatal attempts (Shepard, 
Gurewich, Lwin, Reed, & Silverman, 2016), nonfatal sui-
cide attempts are among the strongest predictors of sui-
cide death—a leading cause of death worldwide (Ribeiro 
et al., 2016a). The scope and seriousness of the problem 
have prompted substantial research attention (Franklin 
et al., 2016). Yet our ability to predict nonfatal attempts 
remains marginally above chance levels (Bentley et al., 
2016; Chang et  al., 2016; Franklin et  al., 2016; Ribeiro 
et al., 2016a). Rates of nonfatal suicide attempts remain 
intractable, with recent estimates suggesting that nonfatal 
attempts may be on the rise (CDC, 2016). The purpose of 
the present study was to evaluate the accuracy and tem-
poral variation of a potentially scalable suicide attempt 
risk detection strategy: machine learning applied to elec-
tronic health records (EHRs).

Recent meta-analyses have shown that the ability to 
predict suicide attempts has been near chance for decades 
(Franklin et al., 2016). A major reason for this poor pre-
diction is that the majority of studies tested predictors in 
isolation (e.g., a depression diagnosis), and even the best 
isolated predictors are inaccurate (Franklin et al., 2016; 
Ribeiro et al., 2016a). Accurate suicide attempt prediction 
may require complex combinations of hundreds of risk 
factors. Traditional statistical techniques are not ideal for 
such analyses; fortunately, machine learning (ML) tech-
niques are well suited for such problems. These tech-
niques can test a wide range of complex associations 
among large numbers of potential factors to produce 
algorithms that optimize prediction. Retrospective ML 
studies suggest that this approach may be promising 
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Abstract
Traditional approaches to the prediction of suicide attempts have limited the accuracy and scale of risk detection 
for these dangerous behaviors. We sought to overcome these limitations by applying machine learning to electronic 
health records within a large medical database. Participants were 5,167 adult patients with a claim code for self-injury 
(i.e., ICD-9, E95x), expert review of records determined that 3,250 patients made a suicide attempt (i.e., cases), and 
1,917 patients engaged in self-injury that was nonsuicidal, accidental, or nonverifiable (i.e., controls). We developed 
machine learning algorithms that accurately predicted future suicide attempts (AUC = 0.84, precision = 0.79, recall = 
0.95, Brier score = 0.14). Moreover, accuracy improved from 720 days to 7 days before the suicide attempt, and 
predictor importance shifted across time. These findings represent a step toward accurate and scalable risk detection 
and provide insight into how suicide attempt risk shifts over time.
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(Delgado-Gomez, Blasco-Fontecilla, Sukno, Socorro 
Ramos-Plasencia, & Baca-Garcia, 2012; Mann, Ellis, 
Waternaux, & Liu, 2008), producing discriminative accu-
racies for suicide attempters (AUCs = 0.60 to 0.80) that 
exceed those of isolated risk factors (AUCs = 0.58;  
Franklin et al., 2016). Although the retrospective design 
of these studies precluded any conclusions about predic-
tion, a recent prospective ML study produced similar 
findings (AUC = 0.76; Kessler, Stein, et al., 2016).

Brief Overview of ML

Although ML has been a part of the computer science 
field for many decades, it has only recently been applied 
to clinical psychology. Later, we provide a brief overview 
to orient readers to what ML is, its advantages over tradi-
tional statistical approaches in clinical psychology, and 
the metrics used to evaluate the performance of ML 
algorithms.

Many problems in clinical psychology can be framed 
as classification problems. That is, much of clinical psy-
chological science is aimed at classifying what psychopa-
thologies exist, who possess a particular form of 
psychopathology, when or if someone will develop a 
form of psychopathology, who will engage in a problem-
atic behavior in the future, and who will respond to a 
particular form of treatment. Many of these classification 
problems are complex, requiring the simultaneous con-
sideration of tens or hundreds of factors to produce accu-
rate classification. Classification problems are solved with 
algorithms, which are a sets of steps for solving a prob-
lem. Algorithms can be simple (e.g., 2 + 2) or highly 
complex (e.g., the Google search algorithm, which con-
siders more than 200 factors); simple algorithms are best 
for simple classification problems, but complex algo-
rithms are necessary for complex classification problems. 
Due to convention and the limitations of most traditional 
statistical approaches, clinical psychological science has 
often attempted to use simple algorithms to solve com-
plex classification problems. This approach can produce 
statistical significance but has a limited ability to produce 
clinical significance. For example, as noted earlier, recent 
meta-analyses on hundreds of studies from the past 50 
years indicate that the ability to predict future suicide 
attempts has always been at near chance levels. The pri-
mary reason for this lack of progress is that researchers 
have almost always used a single factor (i.e., a simple 
algorithm) to predict future suicide attempts (i.e., a com-
plex classification problem; see Ribeiro et  al., 2016b). 
Fortunately, ML represents a potentially effective 
approach for the development of complex algorithms 
capable of solving (or making substantial progress toward 
solving) complex classification problems.

There is a wide range of ML methods, with each 
method possessing advantages and disadvantages (see 
Kotsiantis, 2007); however, all possess at least four nota-
ble advantages over traditional statistical approaches for 
the development of complex algorithms. First, ML meth-
ods determine the most effective and parsimonious algo-
rithm on their own. This is where ML gets its name from: 
The machine itself automatically progresses through 
many iterations as it learns the ideal set of operations for 
classifying data into the desired groups. Traditional statis-
tical approaches in clinical psychology generally require 
that the researcher determine the ideal algorithm a priori. 
This traditional approach typically produces a simple 
algorithm (i.e., fewer than 10 factors, primarily additive 
or multiplicative operations) that is unlikely to be the 
most effective or parsimonious classification algorithm. 
Second, ML algorithms are able to consider complex 
combinations of factors in terms of both number and 
type. Such combinations are unlikely to arise from tradi-
tional statistical approaches in clinical psychology.

Third, most ML approaches are enacted with clinical 
significance in mind. Most traditional statistical approaches 
focus on explaining a statistically significant proportion 
of variance in a particular data set; most ML approaches 
are primarily concerned with raw classification perfor-
mance (see the discussion later) and how accurately the 
ML algorithm will classify new data points. Fourth, ML 
approaches are well suited to classification problems 
involving “high-dimensional” data, or data in which there 
are a large number of potential predictors. Compared to 
traditional approaches, ML approaches are generally 
more resistant against “overfitting” high-dimensional 
data. Overfitting occurs when the model capitalizes on 
the idiosyncratic noise of a particular data set, producing 
a model that is highly accurate in one data set but per-
forms poorly when applied to other data sets. This is 
particularly likely to occur when a model includes a large 
number of predictors because higher numbers of predic-
tors mean more opportunity to account for unique vari-
ance. As described later (see the Method section), ML 
approaches typically integrate strategies to guard against 
overfitting. These four advantages are especially pro-
nounced in larger data sets, where a greater number of 
factors and cases/controls increases the potential for 
accurate and robust classification.

Both traditional statistical and ML algorithms can be 
measured with respect to discrimination or classification 
performance—the ability of these algorithms to separate 
data into different classes, often denoted “cases” and 
“controls” in biomedical investigations. There are several 
ways to quantify classification performance, each with its 
own trade-offs and biases. As described in greater detail 
later, discriminative accuracy—in the literature, frequently 
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measured with an area under the receiver operating char-
acteristic curve statistic (i.e., AUC or AUROC)—is often 
presented as a metric of how well an ML algorithm dis-
tinguishes cases from controls. AUC scores can range 
from 0.5 (accuracy no better than chance) to 1.0 (perfect 
accuracy). This metric can be misleading when true neg-
atives (i.e., controls) far outnumber true positives (i.e., 
cases) because algorithms can achieve high AUCs with a 
good identification of controls but poor identification of 
cases. Due to low base rates, such case-control imbal-
ances are common in suicide research. It is accordingly 
important for ML work in this area to also consider preci-
sion-recall statistics, which jointly consider positive pre-
dictive value (the ratio of true positives compared to the 
sum of true and false positives) and the recall or sensitiv-
ity of an algorithm (i.e., in essence, how accurately an 
algorithm identifies cases). Although an algorithm may 
perform well in terms of AUC/precision recall, its predic-
tions may not reflect the real-world probability of a par-
ticular phenomenon; that is, the algorithm may not be 
calibrated to the real world. A well-calibrated model that 
suggests a 10% risk of an outcome would find that 10 out 
of 100 similar data points would actually have that out-
come in practice. Calibration can be particularly impor-
tant for suicide-related outcomes because (a) there are 
dire consequences when a false negative occurs, (b) 
there can also be major consequences for false positives, 
including use of valuable and limited health care 
resources, and (c) low real-world base rates make it dif-
ficult to translate study information to the clinic. In such 
instances it is important to also evaluate calibration with 
metrics such as Brier scores. Considering all three of 
these metrics together provides a well-rounded assess-
ment of classification performance.

The Present Study

The first aim of the present study was to build on prelimi-
nary studies to evaluate a novel suicide risk detection 
strategy. First, this study was longitudinal, examining risk 
at time points ranging from 1 week to 2 years. Second, it 
included a larger number of suicide attempters (N = 
3,250) than the existing longitudinal ML suicide attempt 
study (N ~ 40), and each suicide attempt was validated by 
suicide researchers with years of experience in classify-
ing suicidal behaviors. Third, analyses included a strin-
gent comparison group: individuals whose records 
contained International Classification of Diseases (ICD-9) 
codes for self-injury, but were judged not to have made a 
suicide attempt after comprehensive chart review. These 
individuals typically received these codes for uninten-
tional drug overdoses, accidental injury, nonsuicidal self-
injury, or injury with unclear intent. Given the substantial 
overlap between risk factors for these behaviors and 

suicidal behaviors (Fox et al., 2015; Franklin et al., 2016; 
Neeleman, 2001; Wenzel & Beck, 2008), we expected this 
control group to provide a rigorous test of ML algorithm 
performance. Fourth, to empirically examine the com-
parative rigor of this control group, we also conducted 
secondary analyses with a random sample of patients 
from the general hospital population as the control 
group. We expected these secondary analyses to produce 
better ML performance, but focus on analyses involving 
the more rigorous control group of nonsuicidal self- 
injurers. Fifth, to rule out the possibility that the present 
approach would primarily be effective for individuals 
with a prior history of self-injurious behavior, we con-
ducted secondary analyses that separately utilized repeat 
and single attempters as cases. Sixth, ML analyses drew 
from a much broader set of potential predictors com-
pared to previous studies. Seventh and finally, we 
employed several strategies to prevent overfitting and 
relied on well-accepted measures of performance includ-
ing precision/recall and calibration in evaluation.

A second major aim was to investigate how risk esti-
mates change as suicide attempts become more immi-
nent. Although short-term risk is a major part of many 
suicide theories (e.g., O’Connor, 2011; Wenzel & Beck, 
2008) and a major focus of clinical guidelines (e.g., Rudd 
et al., 2006), few studies have examined short-term risk 
for suicide attempts. The shortest term study to our 
knowledge included a follow-up interval of 1 month 
(Ribeiro et al., 2012); the second shortest included a fol-
low-up interval of 6 months (Cha, Najmi, Park, Finn, & 
Nock, 2010). Moreover, few studies have examined how 
risk for suicidal behaviors shifts over time, and none have 
examined how suicide risk shifts from years out to days 
out. In the present study we developed separate ML algo-
rithms with information from up to 7, 14, 30, 60, 90, 180, 
365, or 720 days before the suicide attempt. We were 
primarily interested in whether prediction improved as 
the suicide attempt became more imminent (i.e., from 
720 to 7 days before the attempt).

An exploratory aim of this study was to examine how 
specific factors contributed to changes in risk over time. 
We investigated whether the most important factors in 
ML algorithms changed over time, and we sought to 
identify which factors produced the largest spikes in ML-
risk estimates during the 2 years before the suicide 
attempt. Given difficulties with interpreting specific factor 
contributions within ML algorithms (Hastie, Tibshirani, & 
Friedman, 2001; Van Calster et al., 2013) and that present 
analyses were specific to information found in EHRs, 
these analyses were exploratory. However, this explora-
tion has the potential to provide a foundation for studies 
that more directly address this question.

We hypothesize that the present approach will pro-
duce accurate prediction of suicide attempts, improved 
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model performance as the attempt approaches, and shifts 
in risk factor importance as the attempt approaches. This 
investigation has the potential to provide an important 
step toward scalable and accurate suicide attempt risk 
detection and to provide new information about tempo-
ral variation in suicide attempt risk.

Method

Participants

Data were drawn from the BioVU Synthetic Derivative 
(SD), a deidentified data repository of clinical EHR data 
at Vanderbilt University Medical Center (Roden et  al., 
2008). The SD incorporates data across two decades and 
millions of patients. Claims data identifying self-injury 
codes (ICD9 E95x) produced a candidate data set of 
5,543 records of adult patients. Their records were 
reviewed comprehensively by two suicide experts ( J.D.R. 
and J.C.F.) and labeled when applicable as suicide 
attempts. Specifically, a suicide attempt was defined as 
direct nonfatal self-injury enacted with nonzero suicidal 
intent. The date of the most recent documented attempt 
was recorded for reference in temporal analyses. Experts 
independently reviewed records and agreed on 95% of 
cases; subsequent discussion produced agreement on the 
remaining 5%. Individuals deemed to have made a non-
fatal suicide attempt were classified as cases, individuals 
for whom this determination could not be made were 
classified as controls. An exception to this rule was sui-
cide decedents; individuals who died by suicide were not 
included in the present analyses.

As noted earlier, two other types of group analyses 
were performed. First, to empirically test the rigor of the 
nonsuicidal control group noted earlier, in secondary 
analyses we compared suicide attempt cases to a random 
sample of hospital cases. This group was derived from 
the same clinical data repository by randomly selecting 
12,695 adults with no documented history of suicide 
attempts. Age- and gender-matching were not performed 
given the well-documented predictive importance of age 
and gender in predicting risk of suicidal behaviors; 
matching, if performed, generates a uniform and there-
fore noninformative distribution in the data. These con-
trols were selected to represent a broader segment of the 
population, and represent an “extreme groups” design 
that we expected to produce better discriminative perfor-
mance. However, a major trade-off of this performance is 
the lowered rigor of ML performance evaluation and the 
correspondingly diminished quality of the information 
obtain by the test. We accordingly focused on the more 
rigorous nonsuicidal self-injury control group analyses.

Second, given the importance of prior suicidal behav-
iors in future suicidal behavior (see Ribeiro et al., 2016a), 

one possibility is that the present approach would be 
more effective for individuals with a documented history 
of prior suicidal behaviors. To examine this possibility, 
we conducted secondary analyses that respectively 
included only repeat or single attempters as cases. Similar 
performance across these algorithms would indicate that, 
at least within the present ML approach, knowledge 
about prior suicidal behavior does not substantially 
improve predictive accuracy for future suicide attempts.

All methods were approved by the 
Vanderbilt University Medical Center 
Institutional Review Board

Statistical modeling

Modeling setup. Data were preprocessed using Python 
with statistical analyses performed in R (R Development 
Core Team, 2012). Relevant Python libraries included the 
SciPy ecosystem, NumPy, Pandas, iPython (Pedregosa 
et al., 2011; Perez & Granger, 2007; van der Walt, Colbert, 
& Varoquaux, 2011). In R, random forests were imple-
mented via the ranger package (Wright & Ziegler, 2015). 
Logistic regression was implemented via glm in base R.

Modeling approach. Random forests have been 
broadly accepted in the ML community for perfor-
mance—in both accuracy and ease of implementation—
and robustness (Amalakuhan et  al., 2012; Austin, Lee, 
Steyerberg, & Tu, 2012; Futoma, Morris, & Lucas, 2015; 
Harrell & Slaughter, 2008; Kessler, van Loo, et al., 2016). 
The random forest represents an ensemble learning 
method that comprises a set of decision trees that are 
generated via recursive sampling of bootstrapped sam-
ples of predictor data. Decision trees are constructed via 
recursive splitting of random subsets of predictors to 
form “parent” and “child” nodes (Malley, Kruppa,  
Dasgupta, Malley, & Ziegler, 2011; Wright & Ziegler, 
2015). “Splits” in the decision trees reflect binary (i.e., 
yes/no) questions phrased with respect to predictors. 
Several parameters are set by the user, including the 
number of predictors at each node and how each predic-
tor is selected. In the present study, the number of pre-
dictors selected at each node was set as the square root 
of the total number of predictors. Predictors were selected 
via an error minimization approach, which selects the 
predictor that results in minimum mean squared error 
across all other randomly selected predictors in a particu-
lar node. The process is iterated until a “terminal node” 
(i.e., a node that does not have a child node) is achieved, 
yielding a single decision tree. The overall process is then 
repeated a set number of times, in turn producing a 
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multitude (i.e., “forest”) of decision trees. For this study, 
the process was repeated 500 times. Risk estimates are 
determined based on the proportion of trees that predict 
an outcome will occur versus not.

Predictor importance was quantified by evaluating 
decrease in “node impurity” at each split across all deci-
sion trees in the forest (Wright & Ziegler, 2015). In its 
simplest case, node impurity can be considered the pro-
portion of cases versus controls at a particular node. The 
random forest module used here measures estimated 
variance in variables across trees; the variables that maxi-
mize variance of responses between nodes are those that 
track more closely with case or control status. Thus, they 
are more “important” for model performance.

An advantage of random forests is an ability to tolerate 
categorical/nominal variables such as race or gender 
(M = male, F = female) in the modeling paradigm. Ran-
dom forests handle nominal variables via “split points” as 
a general approach. Splitting categorical variables means 
that at various points in the decision trees, some catego-
ries will be placed on the left of a split and the remainder 
on the right. This process, iterated thousands of times 
over hundreds of trees, relies on the same optimization 
parameters used for continuous variables to determine 
the optimal splits to distinguish cases and controls and, in 
doing so, can assign weights to the categories within 
nominal variables as output for future predictions.

To compare the performance of the present ML 
approach to a traditional logistic regression approach, we 
conducted a secondary set of logistic regression analyses. 
Specifically, traditional, nonregularized logistic regression 
was performed on the same data and candidate predictor 
set to estimate usual performance. Predictors were mod-
eled as first-order terms without interactions in multiple 
logistic regression models constructed at each study time 
point of interest.

Bootstrapping was used to assess, quantify, and adjust 
for model optimism (i.e., spurious inflation in perfor-
mance; overfitting; Harrell, 2006; Miao, Francisco,  
Boscardin, Francisco, & Francisco, 2013). In this approach, 
we first train a predictive model using all the available 
data. We also create a set bootstrap replicates based on 
the original data; in this set, we used 100 bootstrap repli-
cates. Models are then generated on the bootstrap repli-
cates. The models derived from the bootstrapped data 
are then applied to the original nonbootstrapped data. 
This provides an estimate of “out of bag” performance. 
Differences between “out of bag” performance and boot-
strapped performance are then calculated and averaged. 
The resultant estimate reflects the degree of optimism of 
the original model. The original model is then corrected 
by subtracting the degree of optimism from the original 
model performance. Although cross-validation and  
holdout sets are also viable alternatives to guard against 

overfitting, bootstrap optimism has been shown to pro-
vide more conservative estimates of model performance 
and lower absolute and mean squared errors (Hastie 
et al., 2001; Smith et al., 2014[AQ: 3]). Of note, the boot-
strap replicates generated at this step are unique from 
those discussed earlier that were used to generate deci-
sion trees within random forest.

Model performance was evaluated using AUC and 
precision and recall metrics. To evaluate calibration in 
this study, we visually inspected the calibration plots and 
also considered Brier scores, which reflect the accuracy 
of probabilistic predictions. Brier scores range from 0 to 
1; a score of 0 represents perfect calibration and discrimi-
nation. Brier scores can be calculated with the following 
formula,[AQ: 4]

B
N

p oi i
i

N

= −( )
=
∑1 2

1

where B is the Brier score, N is the sample size of pre-
dicted instances or individuals, pi is the forecast for indi-
vidual i, and oi is the outcome status for this same 
individual. A lower Brier score accordingly indicates less 
discrepancy between the predicted probability of an out-
come and actual outcome for each individual. Consider, 
as an example, weather forecasting: assume an algorithm 
is used to predict the chance of rain, and it predicts a rain 
chance of 10% tomorrow. Further assume that it does rain 
that day. The resulting Brier score would be 0.90, indicat-
ing a poorly calibrated model. However, if it does not 
rain that day, the Brier score would be 0.10, indicating 
good calibration. We note in this example that the Brier 
score acts also as a reflection of accuracy in addition to 
pure calibration. Similarly, if a ML algorithm predicts that 
a given individual has an 80% chance of making a suicide 
attempt, and the individual makes an attempt, the (indi-
vidual) Brier score would be 0.20. However, if this indi-
vidual did not make an attempt, the (individual) Brier 
score would be 0.80. We include the average Brier score 
for all primary analyses later.

Predictor types. Several data classes were modeled in 
this study: (a) demographic data including age, gender, 
and race/ethnicity were included in candidate predictors; 
(b) diagnoses based in claims data were mapped through 
the Center for Medicare and Medicaid Services Hierarchi-
cal Condition Categories (CMS-HCC), which aggregate 
more than 14,000 ICD9 and 65,000 ICD10 claims codes 
into 189 clinically meaningful categories; (c) past health 
care utilization including numbers of outpatient clinic, 
inpatient admission, and emergency department visits 
were summed for each single year over the preceding 
5-year period; (d) evidence of a prior suicide attempts 
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was captured solely through diagnostic codes (often, 
E95X ICD9 codes) as described earlier (note: determina-
tion of single and repeat attempters was made by expert 
evaluations of EHRs, but these evaluations were not 
included as predictors because they would not typically 
be available and accordingly would not be a scalable 
predictor); (e) vital signs were not included given the 
temporally variant nature of this work, with the excep-
tion of body mass index, which was available and extract-
able at relevant study time points; (f) socioeconomic 
status was partially captured via the Area Deprivation 
Index, a census-based index incorporating education, 
property value, employment data, and others to assign a 
numeric deprivation index to zip codes (Singh, 2003);1 
and (g) medication data were extracted from clinical 
notes including problem lists, prescription events, and 
clinical documentation using natural language processing 
(Xu et al., 2010). Given the tremendous feature dimen-
sionality of medication data including names, brand 
names, and dosages, dimensionality reduction was 
accomplished via mapping medication generic and brand 
names to the Anatomic Therapeutic Classification, Level 
V (ATC, Level 5)—clinically closest to the medication 
class level. The numeric values for each medication class 
were similar conceptually to Term Frequency–Inverse 
Document Frequency, a well-known metric in the natural 
language processing community intended to capture 
term importance compared to all words (in this case, 
medication names) in a corpus of text documents (Rob-
ertson, 2004).

Missing data. Because of the data preprocessing strat-
egy to aggregate visits, medications, and diagnoses into 
counts of classes, missing data in these categories were 
minimized. Demographics were recorded in the study 
data source at the individual patient level and therefore 
were not missing. Exceptions were date of birth, which 
was missing in 13.7% of training data for general controls 
and 0% in the suicidal control cohort, and body mass 
index, which was missing in 53.9% of cases in suicidal 
controls and in 59% of data in the general control cohort. 
In general, we adhered to multiple imputation to address 
missingness in each iteration of the algorithm (Deeks, 
2011; Harrell, 2006; Rubin, 2004). Specifically, the aregIm-
pute algorithm in R was implemented to impute missing 
data via additive regression, bootstrapping, and predic-
tive mean matching. Five imputations were created per 
bootstrap of the 100 bootstraps implemented in this 
study. The bootstraps created by aregImpute to impute 
missing data were in addition to those described earlier. 
Thus, bootstraps were created from original study data 
sets and the entire predictive modeling pipeline was iter-
ated including multiple imputation for each bootstrap 
sample. The performance and predictor importance 

results were subsequently pooled across imputations for 
each study bootstrap and then pooled again across the 
100 study bootstraps. This imputation package also 
imputes nominal variables without complication as it 
relies on regression and predictive mean matching to 
predict missing values. The package converts categorical 
variables into integers as a transformation to accomplish 
the regression itself, which is a common step in the cal-
culation of regression models incorporating nominal or 
categorical variables. The imputed results, however, 
reflect the original categories in the final data set.

Temporal variance of prediction windows. To bet-
ter understand temporal patterns of suicide attempt risk 
over time, an identical modeling setup as described ear-
lier was applied to data censored at multiple time points 
of interest from either the most recent suicide attempt 
(for cases) or the last recorded clinical encounter (for 
controls). Data were censored at the following: 7 days, 14 
days, 30 days, 60 days, 90 days, 180 days, 365 days, and 
720 days from the most recent suicide attempt or last 
recorded encounter (for nonattempters). Each of these 
prediction windows led to a unique set of algorithms, 
which were assessed for optimism-corrected discrimina-
tion and calibration. All modeling efforts at each predic-
tion window were processed using all available data after 
time censoring and through 100 bootstrap samples.

Results

A total of 5,543 patients with ICD codes for suicide and 
self-inflicted injury (i.e., E950–E959) formed the training 
data for this work. After expert chart review, only 3,250 
(58.63%) had expert-confirmed histories of nonfatal sui-
cide attempts. A total of 1,917 patients were judged not 
to have any definitive evidence of a suicide attempt in 
their EHRs; these patients formed a stringent control 
group (35.58% of the E95x candidate set). This finding 
suggests that data analytic strategies assuming all E95x 
codes are indicative of true suicide attempts may contain 
a large proportion of nonattempts. An additional 376 
patients were confirmed by expert review to have died 
by suicide; these were excluded from analyses because, 
based on several conceptual (see Franklin et al., 2016) 
and empirical differences (e.g., methods used, peak age, 
gender differences, frequency; see CDC, 2016), nonfatal 
and fatal attempts are considered to be qualitatively dis-
tinct phenomena. Of note, 1,367 of the 3,250 patients 
who engaged in a nonfatal suicide attempt (42.06%) had 
records indicating prior attempts, as determined by 
expert review. These latter cases composed the repeat 
attempter subgroup (see the discussion later); cases with 
no evidence of a prior attempt composed the single/first 
attempter subgroup.
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Baseline patient characteristics in cases and controls 
are shown in Table 1. As this is an observational cohort 
study and demographics such as age and gender are 
known risk factors for suicidal behaviors, statistically sig-
nificant differences between these groups were expected.

Model performance

General model performance. Discrimination perfor-
mance was good across all models and improved as sui-
cide attempts became more imminent (Table 2). Recall 
(i.e., sensitivity) was high at the outcome prevalence 
threshold throughout; this result indicates true positives 
are likely to be captured with this approach. Optimism-
corrected AUC values with confidence intervals, preci-
sion, and recall are shown in Table 2 and Figure 2, 
respectively.[AQ: 5] A contingency table at each time 
point is shown (Table 3) to provide raw information 
about classification accuracy. Assessed graphically and 
with the Brier score, calibration was consistent across 
time periods with scores in the range of 0.14 to 0.16. 
There is no strict cutoff for acceptable Brier scores, and 0 
is the score for a “perfect” model.

Repeat and single/first attempter subanalyses.  
Restricting the data to those without prior suicide 
attempts, that is, those with only a single suicide attempt, 
resulted in similar performance to that in the group of 
repeat and first attempters combined. For first attempters, 
optimism-adjusted AUC values ranged from 0.82 (95% CI 
[0.81, 0.83]) at 7 days prior to suicide attempts to 0.75 
(95% CI [0.74, 0.76]) at 720 days prior to suicide attempts. 
For those with prior attempts or repeat attempters, AUC 

values ranged from 0.85 (95% CI [0.84, 0.86]) at 7 days 
prior to suicide attempts to 0.76 (95% CI [0.76, 0.78]) at 
720 days prior to suicide attempts.

Subanalyses with a random sample of hospital 
patients as controls. As expected, model performance 
with this less stringent control group was improved. 
Optimism-adjusted AUC values ranged from 0.92 (95% CI 

Table 1. Baseline Patient Characteristics

Characteristic

Cases 
(proportion), 

n = 3,250
Controls,  
n = 1,917 p value

Gender  
 Male 1,696 (0.52) 1,010 (0.53) .364
 Female 1,534 (0.47) 898 (0.47) .59
 Unknown 20 (0.006) 9 (0.005) .75
Race  
 White 2,706 (0.832) 1,499 (0.78) .051
 Black 375 (0.115) 340 (0.18) <.001
 Asian 18 (0.006) 15 (0.008) .16
 Alaskan/Native American 6 (0.002) 18 (0.009) <.001
 Pacific Islander 2 (0.0006) 0 (0) .86
 Declined to respond 5 (0.002) 1 (0.005) .85
Unknown/not recorded 38 (0.01) 19 (0.01) .72
Age  
 Mdn (SD) 37.1 (13.0) 39.1 (14.5)  

Note: p values were generated via differences in pooled sample proportions.

Table 2. Discriminative and Calibration Performance of 
Models by Time Period Before Suicide Attempts

Prediction 
window AUC [95% CI] Precisiona Recallb

Brier 
scorec

7 days 0.84 [0.83, 0.85] 0.79 0.95 0.14
14 days 0.83 [0.82, 0.84] 0.79 0.95 0.15
30 days 0.82 [0.82, 0.83] 0.78 0.95 0.15
60 days 0.82 [0.81, 0.82] 0.77 0.95 0.15
90 days 0.81 [0.81, 0.82] 0.77 0.95 0.15
180 days 0.81 [0.80, 0.82] 0.76 0.94 0.16
365 days 0.83 [0.82, 0.84] 0.75 0.96 0.15
720 days 0.80 [0.80, 0.81] 0.74 0.95 0.16

Note: AUC = area under the receiver operating curve; CI = confidence 
interval. Cases were 3,250 patients with an expert-determined nonfatal 
suicide attempt; controls were 1,917 patients with a self-injury ICD 
code who could not be confirmed as having made a nonfatal suicide 
attempt.
aPrecision ~ positive predictive value = the ratio of true positives 
divided by the sum of true positives and false positives. bRecall ~ 
sensitivity = the number of true positives divided by the sum of true 
positives and false negatives. cBrier score indexes the discrepancy 
between the predicted probability of a nonfatal suicide attempt and 
the actual outcome of a nonfatal suicide attempt for each individual. 
The metric ranges between 0 and 1, with scores closer to 0 indicating 
less discrepancy between predicted probability and actual outcome.
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[0.91, 0.92]) at 7 days prior to suicide attempts to 0.86 
(95% CI [0.85, 0.86]) at 720 days prior to suicide attempts.

Comparison to analysis with a traditional method.  
Multiple logistic regression performed worse than ran-
dom forests, with AUC values ranging from 0.66 (95% CI 
[0.58, 0.75]) at 7 days prior to suicide attempts to 0.68 
(95% CI [0.66, 0.71]) at 720 days prior to suicide attempts.

Predictor importance

Predictor importance also varied across time points. Fig-
ure 1 summarizes importance of the top 50 predictors for 
each model. The size of the points in the plot indicates 
relative weight—larger points indicate greater impor-
tance to the relevant random forest. The full set of impor-
tance values over time is included in Table S1 (in the 
Supplemental Material available online). Further out from 
the nonfatal suicide attempt, hospital utilization history 
and visit tallies are the most important predictors. Demo-
graphics such as age, gender, and race are consistently 
informative.

Multiple CMS-HCC diagnoses (with names matching 
the 2014 release in publicly available data sets; Pope et al., 
2006) were important in predicting nonfatal suicide 
attempts. Recurrent depression with psychosis, schizo-
phrenia, and schizoaffective disorder were consistently 
ranked highly in importance. Age and diagnoses of 

dependence on opioids, sedative-hypnotics, and cannabis 
increased in relative importance as prediction windows 
shortened. Some codes that likely indicate prior suicide 
attempts were also consistently predictive: poisoning, the 
most common mechanism of prior nonfatal suicide 
attempts in these data; injuries by firearms; and injuries 
“NEC” or not elsewhere classifiable. A preponderance of 
NOS (not otherwise specified) and NEC codes are noted 
throughout; clinical claims are well known for provider 
reliance on these types of codes. The increase in granular-
ity of ICD-10 is in part an attempt to improve diagnostic 
specificity in claims coding.

Medication classes such as selective serotonin reup-
take inhibitors (SSRIs), benzodiazepines, anilides (such 
as acetaminophen), and propionic acid derivatives (such 
as ibuprofen) appear stronger within longer prediction 
windows. Melatonin receptor agonists such as melatonin 
supplements gain relative importance closer to the sui-
cide attempt (i.e., shorter prediction windows).

Discussion

Accurate and scalable methods of suicide attempt risk 
detection are an important part of efforts to reduce these 
behaviors on a large scale. In an effort to contribute to 
the development of one such method, we applied ML to 
EHR data. Our major findings included the following: (a) 
this method produced more accurate prediction of sui-
cide attempts than traditional methods (e.g., ML pro-
duced AUCs in the 0.80s, traditional regression in the 
0.50s and 0.60s, which also demonstrated wider confi-
dence intervals/greater variance than the ML approach), 
with notable lead time (up to 2 years) prior to attempts; 
(b) model performance steadily improved as the suicide 
attempt become more imminent; (c) model performance 
was similar for single and repeat attempters; and (d) pre-
dictor importance within algorithms shifted over time. 
Later, we discuss each of these findings in more detail.

ML models performed with acceptable accuracy using 
structured EHR data mapped to known clinical terminol-
ogies like CMS-HCC and ATC, Level 5. Recent meta- 
analyses indicate that traditional suicide risk detection 
approaches produce near-chance accuracy (Franklin 
et al., 2016), and a traditional method—multiple logistic 
regression—produced similarly poor accuracy in the 
present study. The lone longitudinal study that applied 

Table 3. Classification Table Over Time in Days Before Suicide Attempts

Days 7 14 30 60 90 180 365 720

True positives 3,066 3,094 3,094 3,115 3,116 3,093 3,194 3,188
False positives 550 585 639 671 699 725 802 891
False negatives 184 156 156 135 134 157 56 62
True negatives 1,367 1,332 1,278 1,246 1,218 1,192 1,115 1,026

Fig. 2. Precision recall curves of predictive models of risk of suicide 
attempts.[AQ: 9]
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ML to predict suicide attempts obtained greater discrimi-
native accuracy than typically obtained with traditional 
approaches like logistic regression (i.e., AUC = 0.76;  
Kessler, Stein, et al., 2016). The present study extends this 
pioneering work with its use of a larger comparison 
group of self-injurers without suicidal intent, ability to 
display a temporally variant risk profile over time, scal-
ability of this approach to any EHR data adhering to 
accepted clinical data standards, and performance in 
terms of discriminative accuracy (AUC = 0.84, 95% CI 
[0.83, 0.85]), precision recall, and calibration (see Table 
1). This approach can be readily applied within large 
medical databases to provide constantly updating risk 
assessments for millions of patients based on an outcome 
derived from expert review.

Although short-term risk and shifts in risk over time 
are often noted in clinical lore, risk guidelines, and sui-
cide theories (e.g., O’Connor, 2011; Rudd et  al., 2006; 
Wenzel & Beck, 2008), few studies have directly investi-
gated these issues. The present study examined risk at 
several intervals from 720 to 7 days and found that model 
performance improved as suicide attempts became more 
imminent. This finding was consistent with hypotheses; 
however, two aspects of the present study should be con-
sidered when interpreting this finding. First, this pattern 
was confounded by the fact that more data were avail-
able naturally over time; predictive modeling efforts at 
point of care should take advantage of this fact to improve 
model performance as additional data are collected. 

Second, due to the limitations of EHR data, we were 
unable to directly integrate information about potential 
precipitating events (e.g., job loss) or data not recorded 
in routine clinical care into the present models. Such 
information may have further improved short-term pre-
diction of suicide attempts. Future studies should build 
on the present findings to further elucidate how risk 
changes as suicide attempts become more imminent.

Results were similar for single and repeat attempters. 
A prior suicide attempt is one of the strongest predictors 
of a future suicide attempt (Franklin et al., 2016; Ribeiro 
et al., 2016a), raising the possibility that algorithms for 
nonrepeat attempts would be far less accurate. Our find-
ings did not support this possibility, suggesting that the 
present approach is similarly useful for both types of 
attempts. This finding is consistent with evidence that 
although prior attempt is a strong predictor relative to 
other predictors, it is a weak predictor in an absolute 
sense (Ribeiro et al., 2016a). Our results indicate that, for 
repeat attempters in particular, short-term predictions 
were comparable to the combined data set of repeat and 
first attempters, but distal prediction 2 years prior to sui-
cide attempts may be more difficult to predict in repeat 
attempters specifically. Accordingly, knowledge about a 
prior suicide attempt may provide only a very small 
improvement in accuracy within the context of a large 
ML algorithm. We note, however, that this does obviate 
the value of understanding more about the nature of  
initial versus repeat attempts (or single vs. multiple 

Fig. 1. Relative importance of predictors over time. Size of filled circle corresponds to relative predictor importance, with larger circles representing 
predictors with greater importance. NEC = not elsewhere classified; NOS = not otherwise specified; SSRIs = selective serotonin reuptake inhibitors. 
Number of days on the x-axis refers to the number of days preceding a suicide attempt.[AQ: 9]
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attempters). Future ML studies aimed at addressing the 
many questions surrounding potential differences 
between these phenomena are an important future direc-
tion for this work.

We also explored predictor importance within ML 
algorithms. Some predictors were consistently important 
(e.g., psychotic disorders, recurrent depression, poison-
ing), others were important only several months or years 
before the suicide attempt (e.g., prescriptions for SSRIs, 
benzodiazepines, acetaminophen; recent inpatient, out-
patient, and emergency department visits), and others 
still were important only in the days or months directly 
preceding the suicide attempt (e.g., age, certain sub-
stance use diagnoses, prescription for melatonin receptor 
agonists). These findings are generally consistent with 
widely held belief that risk factor importance shifts over 
time, but we caution that these findings should be 
regarded as tentative, associative, and exploratory. For 
example, medications can be indicative of diagnoses or 
latent variables of care (patients may accumulate lists of 
“as needed” medications that they may not take).

In addition to general difficulties with interpreting pre-
dictor importance within ML algorithms, the present find-
ings are subject to the biases inherent in clinical EHR 
data. For example, the relative importance of health care 
utilization in longer prediction windows may reflect a 
relative paucity of other types of clinical data (e.g., psy-
chiatric diagnoses) in those time periods. These limita-
tions notwithstanding, the present findings suggest that 
predictor importance may change over time and lay a 
foundation for future studies aimed at more directly 
investigating such patterns.

The present findings should be considered in light of 
several general limitations. First, the present sample origi-
nated from a single medical center and both left- and 
right-censoring occur naturally as patients enter and leave 
health systems. Data mining and predictive modeling 
efforts based on EHR data are inherently limited by these 
potential biases. Although these limitations may hamper 
modeling efforts, they also confer ecological validity as 
real-world applications of the present approach would 
likely encounter similar biases. Second, one algorithm 
was implemented in this study, and although the random 
forest was chosen for its appealing properties for this use 
case, there may be other algorithms that perform as well 
or better, or perhaps ensemble methods that combine 
multiple algorithms that would perform better still. Future 
work would benefit from investigating this possibility. 
Third, we used of claims information (i.e., ICD codes) to 
identify the initial cohort of patients with claims of sui-
cidal ideation and self-injury. Claims codes are inherently 
biased but remain a mainstay of predictive modeling work 
given their ubiquity, their collection as structured data, 
and the wealth of prior work in clinical practice and in the 

literature to make them more informative, such as CMS-
HCC as was used here. Future studies may benefit from 
applying ML methods in conjunction with different recruit-
ment and diagnostic strategies. Fourth, at first blush, given 
the strong performance metrics, it may be compelling to 
advocate that these algorithms be used as standalone 
determinants of imminent risk. The algorithms developed 
in this study can fairly accurately address the question of 
who will attempt by suicide, but not when someone will 
die. Although accurate knowledge of who is at risk of 
eventual suicide attempt is still critically important to 
inform clinical decisions about risk, it is not sufficient to 
determine imminent risk. The inability to speak to immi-
nent risk prediction is in part a reflection of the limitations 
of the types of data available in EHRs. Applying ML meth-
ods to data derived from studies designed to predict 
short-term or imminent suicidal behavior would be valu-
able. Similarly, it is critical to consider the clinical useful-
ness of applying a model in a given use case; this requires 
an understanding of underlying clinical utilities and a 
decision analytic approach to support implementing pre-
dictive models into clinical practice where there can be 
both positive and negative consequences. The clinical 
informatics methodology required to determine the 
appropriate point at which to insert new predictions into 
the clinical workflow is another critical aspect of this type 
of work that must be considered before models are imple-
mented in practice. Future work is planned to address 
these issues.

Fifth and finally, it is tempting to interpret individual 
predictor importance in any ML study; the risk of conflat-
ing correlation and causation is extremely high, however. 
The importance metric chosen here—mean decrease in 
impurity—can discard potentially informative predictors 
that may provide similar information but were not 
selected algorithmically (Schwarz, König, & Ziegler, 
2010). For example, the presence of melatonin receptor 
agonists may be replaced by a well-modeled predictor of 
“sleep disturbance” in another study, or it may capture a 
unique aspect of clinical workflow whose latent variables 
are not well modeled in extant data. We also emphasize 
that each “important predictor” identified in the present 
study (see Fig. 1) should be considered in the context of 
the algorithm as a whole because this was the context in 
which importance was determined. The present findings 
may permit conclusions about broad patterns of impor-
tance (e.g., general hospitalization and prescription vari-
ables are primarily important several months or years 
before a suicide attempt), but we would caution against 
more specific conclusions (e.g., acetaminophen prescrip-
tion status is a particularly important predictor several 
months or years before an attempt).

The present study represents an important step toward 
the development of an accurate and scalable suicide 
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attempt risk detection. The present findings are promis-
ing, but further studies would be helpful for investigating 
the contribution of other predictors (e.g., life events), 
validating these algorithms on external data, and testing 
how this type of risk identification approach affects inter-
vention usage and efficacy. For example, a clinical deci-
sion support trial implementing a temporal risk profile of 
suicidal behaviors at clinical encounters might enable 
providers to target interventions not just to the right indi-
viduals but also to the right time.
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